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QUADRATURE FORMULAE USING 
ZEROS OF BESSEL FUNCTIONS AS NODES 

RIADH BEN GHANEM 

ABSTRACT. A gaussian type quadrature formula, where the nodes are the zeros 
of Bessel functions of the first kind of order a (R((a) > -1), was recently proved 
for entire functions of exponential type. Here we relax the restriction on a as 
well as on the function. Some applications are also given. 

1. INTRODUCTION AND STATEMENT OF THE RESULTS 

It was proved by Boas [4] that if f is an entire function of exponential type 
2T > 0 belonging to L1 (-oo, oo) then 

(1) j f(x)dx=T k f ((2k-1)7r) 

This formula is equivalent to the following: 

j (f(x) + f(-x))dx = r E (f (2 r) + f ( 2 r)) 

since we may make the decomposition f (x) = (f (x) + f (-x))/2+ (f (x)-f (-x))/2. 
In this form, it is clear by applying (1) to f(z) + f(-z), that it is enough to 

suppose that f (z) + f (-z) is entire of exponential type 2T such that f (x) + f (-x) 
belongs to L1(0, oo) to obtain (1) without imposing any condition on f(z) -f(-z). 

Let J, (z) be the Bessel function of the first kind of order a. It may be recalled 
that the function 

G~(z) := =jZ) z22+2k k! F(k 1) Z k=O 2o2k (ka1 

is an even entire function of exponential type 1. We denote by jk = jk (a) 
k = ?1, 2, ... , the nonnull zeros of Go, (z) which are all simple, ordered such 
that j-k =-jk and 0 < Jij I < < ... . Since Go,(0) = -, the only values 
of a for which Go,(0) is equal to zero are -1, -2,.... 

Formula (1) has recently been extented using the zeros of Go, (z) as nodes [5]. 
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Theorem A. Let R(a) > -1 . For all functions f of exponential type 2r such 
that f (x) = O(xl-6) , x -* ?oo, with 8 > 2X(a) + 2 , we have 

0002 
00 j2c 

(2) I x2a+1 (f (x) + f (-x)) dx = 22 S ) ( f (jk) +f (_k 

This result is in fact valid under weaker integrability conditions [8]. 

Theorem B. If a > -1 , then (2) holds for every entire function f of exponential 
type 2T such that x2a+1 (f (x) + f (-x)) belongs to L1 [0, oo) . Besides, the series on 
the right-hand side of (2) is absolutely convergent. 

If f is integrable on [1, X] for all X > 1 and limx,z fx f (x) dx exists, then we 
denote the limit by f1? f (x)dx and say that f is integrable in the sense of Cauchy 

on [1, oo) . If f is integrable on [8, 1] for all 8 E (0,1) and lim6o f' f (x) dx exists, 

then we denote the limit by f j0 f (x)dx and say that f is integrable in the sense of 
Cauchy on (0,1] . If f is integrable in the sense of Cauchy on [1, oo) and on (0, 1], 
then we say that f is integrable in the sense of Cauchy on (0, oc) and denote the 
integral by 

--400 

J f (x) dx 
0 

We remark that if f belongs to L1 (0, oo), then 
J -00 f0 

f (x) dx =J f (x) dx. 
0 o 

Changing convergence in L1 [0,oo) by convergence in the sense of Cauchy on 
(0, oo), the following result was proved in [8]. 

Theorem C. Let a > -1 and f be an entire function of exponential type o- < 2T 
such that x2a+1(f(x) + f(-x)) is integrable in the sense of Cauchy on (0,0oo) 
Then 

(3) x2 (f (x) + f (-x)) dx T 
32f?2 

0 0 
C -- 

0 72a+2 (Jo, (3 k) )2J ( 7 

if the series on the right is convergent. 

Since in Theorem A it is supposed that R(?a) > -1, the question arises if this 
theorem would hold for any complex number a , and if Theorems B and C would 
hold under the same condition on a. The answer is affirmative when a is not a 
negative integer, as we will see later. 

The particular case a = o1 of Theorem B, was proved in [6, Theorem 1] where 
formula (3) was in this case replaced by an equivalent formula which we may obtain 
by a translation, and later it was shown in [9, Corollary 4] that in this theorem 
the condition regarding the convergence of the series is superfluous. So it appears 
natural to expect Theorem C to hold without this condition. 

We are now ready to state our main results. 
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Theorem 1. Let a E C \ {-1, -2,...} and p a nonnegative integer. If f is a 
function such that f(z). + f(-z) is entire of exponential type o- < 2T and 
xZ(f(x) + f(-x)) is integrable in the sense of Cauchy on (0, oo) , then 

-*~00 

J x2+2p+ (f (x) + f (-x))dx 
0 

k=( (GO,jk)) (f (+) + 
r 

Theorem 2. Let a E C \ {-1, -2,...} and p a nonnegative integer. If f is a 
function such that f (z)+ f (-z) is entire of exponential type 2T and x ?2a+2p+l (f (x) + 
f (-x)) belongs to L1 [0, oo) , then 

j 2a+2p+ (f (x) + f (-x))dx 

(2ca+2P+2 E (GI jk))2 (f (+) +f 

Besides, the series on the right-hand side of (5) is absolutely convergent. 

The particular case p- 0 in (4) and (5) leads us to formula (3) and formula (2) 
respectively, since we have 

(6) c, =GI (jk) for k = 1, 2. 

The following result was also proved in [8]. 

Theorem D. Iff fis an entire function of exponential type T such that Ix+ 2 f (x) 
E L2((R) for some a > -1 , then 

(7) J |X| dx = 72a+2 E (Jo,ik))2 () 2 

k#O 

We remark using (6) that (7) is equivalent to 

p00 2 
00 

1 k2 

1 X12 
o 

2lIf f(x) 2dx = 2 2 ( 1 |k (i f | 00 ~ ~ T(~2k=-0 aGjk) T 
k#O 

since the zeros of Go(z) are all real for a > -1 and G' (-jk) =-G' (jk) * So, in 
view of Theorem 2, we may extend Theorem D as follows: 

Theorem 3. Let a E R \ {-1, -2, ...} and let p be a nonnegative integer. If f is 
an entire function of exponential type T such that xo+P+ f (x) E L2 (R) , then we 
have 

00IX2o+2+lf()2 2 00 i 
p 

i 2 
(8) ] X f(x) dx = _22 _k , (Jk) 2 

-00 ?2 ~~~~~~~~~~~~~~~~~ F(GI (jk)) 
k$O 

When a = n + 2 v p = -n - 1 , where n is a negative integer, Theorem 1 and 
Theorem 2 respectively give in view of [1, Formula (19)], the following corollaries. 
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Corollary 1. Let n be a negative integer, f a function such that f (z) + f (-z) is 
entire of exponential type o- < 2T and integrable in the sense of Cauchy on (0, oo) 
Then 

(9) J (f(x) + f (-x))dx =-ZCk (f ( k(n2+ ))+ f (2 jk(n+ 

where 
C j-1 (2n - r - 2)! (-2n - 2r - 2)! 2n+2r+2 

Ck r! [2-n-r-1 (-n-r-1)!]2 Jk 

Corollary 2. Let n be a negative integer, then (9) holds provided that f is a func- 
tion such that f (z) + f (-z) is entire of exponential type 2T belonging to L' [0, oo). 

We also mention the following corollary of Theorem 1. 

Corollary 3. Let a E (C \ {-1, -2, ...} , f a function such that f (z) -f (-z) is 
entire of exponential type a < 2T and x2a+2P(f(x) - f(-x)) is integrable in the 
sense of Cauchy on (0, oo) . Then 

-*00O 

I x2?a+2p (f (x) -f (-x)) dx 
0 

(10) 2 00 (2p-) I K 

(GI (j,k)4 ( - f 

This result is obtained by applying Theorem 1 to the function (f (z) -f (-z))/z. 
Analogous results, where the condition on f (z) + f (-z) is replaced by a condition 
on (f (z) -f (-z))/z , can be deduced from Theorem 2 and Corollaries 1, 2. 

2. LEMMAS 

As a special case of [7, Lemma 1], we have 

Lemma 1. Let f be regular and of exponential type o- in the closed upper half-plane. 
If for some real number 6, f (x) = O(xj-6), x -? ?oo , then we have 

(eRI sin fl 

(11) f(Re2O) = R6s ) uniformly for 0 <0< 7r and R -- oo. 

We shall need the following result [8, Lemma 3], for whose proof we refer the 
reader to [6, ?2.2]. 

Lemma 2. Let f be regular and of exponential type in the open right half-plane. 
If f is integrable in the sense of Cauchy on [1, oo) , then f (x) -? 0 as x -? oo and 

so f (x) is bounded for x > 1 . 

Lemma 3. Let f be regular and of exponential type o- in the first quadrant. If for 
some real number 6, f (x) = o(xI-') , x - oo , then for 0 belonging to any compact 
subset of [0, 2) , we uniformly have 

* 
) eOIRI sin 01 

(12) f(Re2) = o R& ) as R oo. 

Proof. Apply [3, Theorem 6.2.8] to the function G(z) (z + i)3f (z) which is 
regular and of exponential type o- in the first quadrant, and G(x) -? 0 as 
x oo 00. O 
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Let 
RNf= RN(a) := N7r + R(a)7r/2 + 7r/4. 

We need the following result [5, Lemma 1]. 

Lemma 4. Let z = Re2o be a complex number on the the circle lzl = RN, where 
N is a large positive integer. There exists a positive constant C = C(a) such that 

(13) Jo(z) > C eRNIsinO 101 <r. 

We need to recall that 

H( )(Z) :=J() - )J(z) and H(2)(Z) = (z)-J(z) 

are said to be the Bessel functions of the third kind of order a . When a is an 
integer, the right-hand sides are to be replaced by their limits [11, ?3.6]. In order to 
prove the next lemma, we shall need the following asymptotic expansions of these 
functions [11, ?7.2]. 

(14) H(1)(Z) 2 42 + O( z O(Z) ?0 Z -I 

(15) H( )(z) - 2( O( ,z ? () 0 Z l 4 

We also need to introduce Cx = {z: lzl = A}, C+ := {z lzl A, (z) > 0} 
and C0 := {z: lzl = A, Q(z) < 0} . From now on, for all large RN, we give to the 
paths CRN C+N and C-N the positive orientation, and for all small E > 0 , we 
give to C, C+ and C,-, the negative orientation. We are now ready to state the 
following 

Lemma 5. Let m be a positive integer and a, /3 E . If f is an even entire 
function of exponential type o- < 2m such that xR(O)f (x) is integrable in the sense 
of Cauchy on (0, oo), then 

I' ~ ~ H(HW(z)m (16) lim ? |C+ ( z) d 0 

and 

N--~oo Jo,(z) (17) lim N Kf ()(()(Z)) dzO 

Proof. By virtue of (14) there exist positive constants Ci and R' such that 

(18) IH0(Re2O)I C< R6eiR - C eRsinO for all R > R- 
/R -\R 

Applying Lemma 2 to the function F(z) := zR(')f (z) , we conclude using the parity 
of f that F(z) -O 0 as x -* 0oo , which is equivalent to 

(19) If(x)I = o(lxl -"()) as x - ?0oo . 

Therefore by Lemma 1 applied to f (z) and F1 (z) = f ((z) there exist two constants 
M > 0 and R' > R' such that for all R > R' we have 

(20) R ()l f(Re't) < Me,RIsinOi for all 0 E [-7r , 7r] 
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According to (19) and the hypothesis, we may apply Lemma 3 to f(z) and F1 (z) 
to deduce that 

(evRI sin 0 1 \ 

(21) f(Re'o) = 0 R(si) ) as R - oo 

uniformly in 0 belonging to any compact subset of [-7r, 7r] \ { 2, ' } . 
Now let C be as in Lemma 4 and 

ECm (2m -) 

C1 

where E is any given positive number. From (21) it follows that for any given & in 
(0, 2 ) ,there exists R3 > R' , such that for R ? R3 

(22) R"() If (Re2o)t < ,'e,RI sin 0 for all 0 E [-6,8] U [7r - 6,7r + 8] 

Next, suppose R = RN > R3 then using (18), (20), (22) and Lemma 4, we obfain 

' JC+ J' c ( H(Z) ) m 
<(R zo l(Rei)$SRi ((dz(,)) Rf 

/'f6flr\ ~ Ho(')(CReR)In \m 

< (IJ'o J(Reo ) 3 e iOI k CeRI sn OI ) R dO 

f7r-6 MRsi (eRsin m 
+1 Re CeRIsinOI ) R0d 

0(2rn- u) (j8fr)eUmRIsinbIRidO 

E(2m ~ ~ ~ ~ c - 
o-) 

+M , j2 6 e(Us2m)RnsinbR R dO 

= 2&(2rn-c) j e(i2m)RlsinOlf dO o 2M-2m)RI sin O J R d l R dO 

since in view of the periodicity and the parity of 0 F-> I sin 0 , we have 

I (U-2m)RI sin 01 dO - j e(-2m)RI sin 01 dO e(2m)RI sin 01 dO 

and 
7r-6 -6 r 

Je e(2m)RI d0 = J ( e2m)R sin 01 d 
2 

(o-2m)Rj sin 01 dO 
2 2 

Thus, using the inequality sin 0 > 2 for 0 E [0, 2] , we obtain 

1(R) < 2(r ) J e(U2m)Ro R dO+ 2MC j2 e(,2m)Ro R dO 

= c? (1 - e(U2m)R,26) + MC17 (e(oJ 2m)R2 6 _ e(U2m)R) 
Cm (2m- -u) 
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On the other hand, since o- < 2m , we have 

0 < (1 _ e(of-2m)R 
2 

) K 1 and lim (e(,-2m)R 26- _e(of-2m)R) = 0 
R-*oo 

It follows that for R= RN sufficiently large, we get I(R) < 2E , which proves (16). 

In the same manner, we use (15), (20), (22) and Lemma 4 to prove (17). Lii 

Lemma 6. Let a C C and let f be an even entire function such that x2R(a)+lf(x) 

is integrable in the sense of Cauchy on (0, oo) . Then we have 

(i) limJ z2a+1f(z)dz = 0 

(ii) if a is an integer, then for R > 0 
R R 

lim J x20+1f(x)dx x2a+lf(x)dx 
0Jo Jo 

Proof. Let q be the smallest nonnegative integer such that f (q) (0) 7 0 and consider 
aq := f(0)/q! . Then x2"(a)+1f(x) is equivalent in a neighbourhood of zero to 
the function aq Xq+2R()+l . Since by assumption x2R()+l1f(x) is integrable in the 
sense of Cauchy on (0,1], the same must be true about aqxq+2R(c)+1 and so 

(23) ,ut:= q + 2R(a) + 2 > O . 

Since we may write f(z) := zqh(z) , where h(z) is entire, there exists a positive 
constant N , such that 

If(z)I < NJZlq if Iz < 1. 

Hence we conclude that for E in (0,1) 

I + z2a+1l f (z)dz l < l l Z1211' ,+l I f (Zz I I dz I < N7rEl 

Now letting E tend to zero, we readily obtain (i). 

When a is integer, (23) implies that ,u is a positive integer, so ,u > 1 . Therefore 
z2a+j f(z) = z"-1h(z) is entire and consequently bounded on [0, R] . Thus (ii) 
follows by the Lebesgue dominated convergence theorem. LII 

Lemma 7. If n is a nonnegative integer, then we have 

(24) lim G' k (jk(n+ G))G' (jk((n)) for k = 1,2,. 
q--+00 n q 

Proof. Noting that the positive zeros of Jc, (z) vary continuously as a varies for 
a > -1 , we have 

(25) liM jk(n+ 1) = jk(n) for k = 1,2,.... 

since for a > -1 , {ik (a)}1I is a sequence of positive numbers. Therefore, for any 
given positive integer k, the sequence {jk(n + i)}j??= is bounded. Let 

M/f, = Ml (k) SUP= 1Up'k (n +1 :) q = 1,2, ...} 

Next, we recall that the function G, (z) is an analytic function of z as well as 
of a . To get the derivative with respect to a , we use its Laurent expansion (r(l,) 
is entire). Therefore using the continuity of G' (z) with respect to both a and z 
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we deduce that the family of functions {G' +1 (z) }q1 is uniformly bounded on any 

compact subset of C and 

lim G',+ 1 (z) = G' (z) for z E C. 
q->oo q 

Hence, by using [10, Theorem 14.6] we conclude that {GI 1(z)} 1 , converges 

uniformly on any compact subset of C to G' (z) . Thus 

(26) G' + 1 (k(n + ))-G' (jk(n + )) up I G + 1(z)-G' (z) l 0 
q Jz< J q 

as q tends to infinity. 

By virtue of (25) and the regularity of G' (z) with respect to a , we deduce that 

(27) lim G'n( jk(n + G )) G'(jk(n)) 
q->ooq 

Since 

IG+1(jk (n+ ))- (jk(n)) 

< IG$ (jk(n+ 1)) - G(jk(n+ ')) + G' (jk(n+ 1)) -G' (jk(n)) I 
q 

then (24) follows using (26) and (27). LIi 

Observing that the proofs of Theorems 1 and 2 in [2] are similar, we may conclude 
that the remark made by the author in that paper concerning his first theorem, 
just after its proof, applies also to the second and for the same reasons. Taking 
into account the notes given in [7, Section 2] about [2, Theorem 2], we are ready to 
state 

Lemma 8. Let {Ak}ll be a sequence of complex numbers, & and E two positive 
constants such that Ak = A' + iA , A/ > ? A' -A' > 6 and IA ?& 1ff is 
regular and of exponential type in the open right half-plane such that 

If(x)ldx < oo, 

then 
00 

E If (Ak) I < OC- 

k=1 

Lemma 9. If f satisfies the conditions of Theorem 2, then the series on the right- 
hand side of (5) is absolutely convergent. 

Proof. First we suppose f is even, T =1 and p = 0 . Since for k sufficiently large 
[11, p. 506] 

(28) -Kk + (x _ 18 1r- 40a2 - I (4a2 - 1)(28a2 - 31) 
(28)Jk-V 2 4J 8(k? 1 2 ) 384w3(k?-?)3 

then we have 

(29) A/ = k) = (k + 7a - 
AT + O(L) 
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Thus, there exist two positive constants 8 and 
E 

, such that A'?1 - A' > 6 and 

IAI <E . Therefore applying Lemma 8 to the function F(z) := z2a+1f(z) with 
Ak := ik, we obtain 

00 00 

(31) E |F(Ak)j l ik I2()+ If(jk)I < 00 
k=1 k=1 

Let A := sup{ (jk)I: k 1,2,... },then A is finite by (30). Now we recall the 
recurrence formula [11, ?3.2] 

(32) J' (z) = J (z) + Ja-(z) z 
and the asymptotic formula [11, ?7.21] 

Ja(z) -cos(z- - -)+O 31 , larg(z)I <7r lzl -o. 

Replacing in (32) J, (z) and J,-i(z) by their respective asymptotic expansions, we 
obtain for z E {z: arg(z)I < 7r, Is(z)I < A} 

2air ir (i 
(33) J'a (z) = -sin(z- 2 -4)+O ? (l13 ) I |Z C 

2 4k J 

since sup{cos(z - 7- 7) IQ(z)I < A} is finite. 
It follows from (28) that for all large k 

sin(jk - 2C-4 ") > 

Therefore using (33), we deduce that there exists a constant K1 > 0 such that 

(34) 1Ja (jk) I > for all k > K1, 

and using (6) we have 

'ik = (Gf (jk) k 
f (jk) < 2X Elik 12 R (oa + 00f (ik) l 

E- (G' (jk)) - (Jl (jk))k=3kfj)<0 

For the general case when f (z) , T and p satisfy the conditions of Theorem 2 without 
any restriction, we may apply the above consideration to the function 

g(z) := z2 (f(Z + ( ) .C 

3. PROOFS OF THE THEOREMS 

Proof of Theorem 1. Without loss of generality, we may suppose (as in the proof 
of Lemma 9) that f is even, T =1 and p 0. 

Assume that a is not an integer. We consider the functions 

F,, (z) := 2a+1 f(z) KWz = J- l'(Z) 
Ja (z) 

Since G,3(z) is entire for all 0i , the function 
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is meromorphic in C . Besides, using (28) we have IjN I= IN1r +a 7- 71 + ?(k)) 
so after a few calculations we obtain 

R2 - lIN 12 = 1r2(N + Ra)-(W2))2 + 0(1), 

j 1 2 - = 2(N + (a) + + ( )2 + 0(1) 

Hence, there exists NO > 0 , such that 

(35) lJNI < RN < IjN+1I for N > NO. 
Thus, using the residue theorem, we get for N > NO 

JCN F, (z)K(z)dz = 27ri E Res(F, (z)K(z))Z=jk 
CRN lijk I <RN 

NG 
= 27ri E e ik GI (jk) f (ik) 

k=-N G(k 
k#O 

Z 47ri e( jk) f (jk) 
GI (jk) k=1a 

But since [11, ?3.12] 

Ja (z)J (z) - J (z)J (z) 2 sin(air) 

qrz 

we have in view of (6) for N > NO 

(36) 4~~~~~~~ ~ ~~(e2oar 
N 

f Qik) (36) R F (z)K(z)dz = 4 (GZ(_Ii)kE I ( ))2 
RN k=1 

Next, we note using the definitions of H( )(z) and H(2) (z) that 

e27ri 1 H$) (z) 
(37) K (z) 1 I+ 2 Ja (z) 

(38) = e 
- e2c 

e 1 Ha (z) 
2 Joz(z) 

We split the initegral over CRN into two integrals over CR+N and CRN respectively. 
On replacing K(z) by the right-hand side of (37) in the first one, and by the right- 
hand side of (38) in the second, (36) gives for N > NO 

CRN F(z) dz + 2Jo (z) f (z) dz 

RN RN 
= 4 (e2aTi _ 1 ) E ( G'7(( (z2) )Z2 

semicircles CN C+ By choosing the logarithm whose imaginary part belongs to 
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the interval (- v, ], it is clear that F,, (z) is regular in a simply connected open 
set containing F . Hence, using Cauchy's theorem, we have 

FJC (z) 
dz /-RF(x)dx-J F+ 

f(z)dz- 

F (x)dx 
RN -RN 

FRN 
J 

(Fo, (x) + F (-x))dx-J Fa (z)dz 

But since f (x) is even, we obtain 

fRN 

(40) / Fo,(z)_dz R( .2wi) N x(z) dz 
RN ? 

On the other hand, 

I2a7ri J 2a+1 f()z=J (Z, 2a+1 fzd z2?f (z)dz ~ (z ?f (z)dz 

CRN CRN 

r ~~~~~~~~~27 
- J (_Z)2,+lf(- z)dz F-J7 F,(-RNei0) iRNe2OdO 

CRN 

Fo(RNe'o) iRNeiOdo5 N F,,(z)dz 
O C~~~~~RN 

Hence, letting E tend to zero in (40) and using part (i) of Lemma 6, we deduce that 

(41) e20zdz J FC F (z)dz = (e - RN F(x)dx 
CRN C ~ ~~+ 0 R~N FRN )z (ec 

Using (39) and (41), we obtain when a is not an integer and N > No 

JNF, (x) dx + ? J H J (z) )dz--i Hz 4J) 
(42) Joz(z) 4 

- Joz(z)f()d 
(42) ~~~RN JRN 

N 

E(G' ( jk ) )2 k=1 a 

If n is a given nonnegative integer, then by virtue of (35), we have Gn(z) 7 0 on 
CRN= CRN (n) . Besides, the function Go (z) is analytic of a as well of z. Therefore 
1/J (z) is bounded in a neighbourhood of the set {(al, z): a = nm, z E CRN((n)} 

Using this and formulae (14), (15) we obtain for q sufficiently large 

(43) sup { H( )(z)/Jo4(z) z E C )+ n - 1 < a < n+ 
1 

< oo 

(44) sup { H(2 )(z)/Joz) z Z CRN (O), n - < a + < n+ -} < co. 

Further, let a = aq := n + 1 in formula (42); then by letting q tend to infin- q 
ity, we formally obtain (42) for a = n . To justify the interchanges of the order 
of integration and limit, we use part (ii) of Lemma 6 for the first integral. For 
the second and the third we use (43), (44) respectively and the Lebesgue domi- 
nated convergence theorem. The interchange of the order of summation and limit 
on the right-hand side of (42) is justified using Lemma 7 and the continuity of f (x) . 
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Now letting N tend to infinity in (42) and applying Lemma 5 with m = 1, /3 
2a + 1, we deduce that 

(45) J F, (x) dx = 2 f (G' (jk))2 

which is equivalent to formula (4) when f(z) is even, T =1 and p = . D 

Proof of Theorem 2. Without loss of generality, we may suppose that f is even, 
T =1 and p = 0 . Let 

F(z) = z2+1 f(z) , Z (j) 2k2(G f(jk))2 () for k I + 2 

Then according to hypothesis, the function f (z) satisfies the conditions of Theorem 
1 with p = 0 andT = 1 + , where E is a given positive number. We therefore have 

00 00 

(46) 1/ F(x)dx = Z 1+E(jk) 
k=1 

F'urther, we show that for 8 > 0 we can choose Ko such that 
00 

(47) se S E bl+(jik) < 3 
k=K0 

if E E [0, 2] . By virtue of (29) and (30) there exists K2 such that for E E [0, -] 

(48) 1 (R(jk+l)1-R(k)) > 1 

(49) ! 
(I(jk) ) 

- (a) 1< for k > K2. 
(1Ic) 2 2 

Let 

Ik := [k-2,1k+ 1],I1:= [ 2)-'2+]' 2 2 ~ 2 2,12?2] 

and let .k (1 < k < oc) be a number in Ik x I, such that 

F (~k) MaXI F (z) 
Z ) EIk XI 

The points .k C [k-- k) x I form a subsequence {.} and those in [k, k+ x] X I form 

another subsequence {. Notethat +1) - (n) > 2 1 1 '(n- n 2 - 2 
and that the same inequalities are also valid if we replace (' by " . So by Lemma 
8, we have 

00 00 

J F((n')j < o0 J F((n1)I < ??. 
n=1 n=1 

Thus 
00 

EIF(Qk) < 00 

k=1 

On the other hand, using Lemma 9, we have 
00 

k=1 
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Therefore, if K1 is the constant used in (34), there exists Ko > max{Kl, K2} such 
that 

00 8 008 

(50) | F(k) I < 24' v (k) < - 
247r ~~~~3 

k=[ 1 k=K0 

Hence, by (6) and (34) we have 

1+ ? Ei(1+ E) ( + E)i + E (1+E) 

Since by (48), the rectangles of the form Ik x I contain at most two points of the 
sequence { k 

,k>K we have 

47 
00 

8kcc 

k=Ko ( 1+) E k F(Kk) <- 3, 

which proves (47). It is clear that as E -> 0 the function (l?j2a+2 f( z ) converges 
uniformly on all compact subsets of C to f(z) . Therefore, there exists a positive 
Eo such that for E E [0, 60] 

Ko-1 Ko-1 

E bl+e (ijk)- E 
b (jk) < 

k=1 k=1 

Thus for E E [0, 0], we have by virtue of (47) and the inequality on the right-hand 
side of (50) 

00 00 00 

f1+e(jk) - 5 1((jk) <?3 + 5 |+e(jk) + 2 I'1(jk) <6. 
k=1 k=1 k=K0 k=K0 

Hence, 
00 00 

lim E '01+ (jk) = Eb1 (ijk) 
k=1 k=1 

Therefore, (5) follows by letting E tend to zero in (46) 

The absolute convergence of the series on the right-hand side of (5) has already 
been proved in Lemma 9. D 

Proof of Theorem 3. Write f(x) = f (x) + i f2(x), where fi(x) = R(f(x)) and 
f2(x) = s (f(x)) when x E R. The function f?2(z) + f22(z) satisfies the conditions 
of Theorem 2. On the other hand, we have If(x) 2 = f 2(x) + f22(x) . Therefore we 
have 

j 
x2a+2P+1 (If (x) 12 + If (-x) 12)dx 

00 .2p ik2 ik 

T2a+2P+2 (G(jk))2 (f( ) + f (_ ik) ) 

which is equivalent to (8). D 

Remark 1. The above proof differs only in some details from that of the corollary 
of [1]. 
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Remark 2. The numbers a =-n {-1, -2, ...} are the only complex numbers for 
which we have Gcx (0) = 0 and are also the only values for which G0C has a zero of 
multiplicity greater than one. In fact, 

oo ~~~z2k 
G-n(z) = Z(_1) 22k 

k=n 
2 k! (k - n)! 

so that the multiplicity of zero is 2n . Therefore, at the place in the proof of Theorem 
1, where the residue theorem is applied to the integral fcRN Fo,(z)K(z)dz, there 
would be a nonzero contribution coming from the 2n-pole at the origin. This will 
mean a change in the form of the formulae (4) and (5). 
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